Accelerating tooth movement: The case against corticotomy-induced orthodontics

David P. Mathews and Vincent G. Kokich
Seattle, Wash

We are pleased to participate in this Point/Counterpoint debate regarding corticotomy-facilitated orthodontics, also known as accelerated osteogenic orthodontics or periodontally accelerated osteogenic orthodontics. Drs Wilcko and Wilcko have presented their beliefs in the “Point” article. Our assignment is to present and justify an opposing viewpoint. Actually, there are some statements by Drs Wilcko and Wilcko with which we agree. We disagree with other statements. Finally, some issues regarding this procedure were not discussed, and we will raise these in our “Counterpoint” article. Our goal is to answer the following question for the orthodontic clinician: Is corticotomy-facilitated orthodontics an efficacious, effective, and efficient method of accelerating tooth movement in adult orthodontic patients? Before we begin, let us define these terms. According to accepted definitions, (1) efficacy measures how well treatment works in clinical trials or laboratory studies under ideal conditions; (2) effectiveness measures how well a treatment works in routine clinical practice; and (3) efficiency measures the outcome of a procedure by evaluating the value received relative to the costs in terms of time, money, and morbidity. With this in mind, we will divide this article into a discussion of 7 major questions.

DOES ALVEOLAR CORTICOTOMY RESULT IN ACCELERATION OF TOOTH MOVEMENT?

We agree with Drs Wilcko and Wilcko on the answer to this question; alveolar corticotomy does induce an acceleration of tooth movement. This effect has been documented in rats,1-4 dogs,5-7 cats,8 and humans.9-13 The best of these experiments were performed using a split-mouth design, with a corticotomy on one side and the opposite side of the dental arch used as the control.5-7,12 A calibrated force is placed on the teeth in both the right and left quadrants, and the rate of tooth movement is calculated by measuring the distance moved over time. The outcomes of these experiments are typically uniform and show that the rate of tooth movement is accelerated on the corticotomy-treated side.

How much acceleration in the rate of tooth movement can be expected? Most animal experiments show that the amount of movement doubled over the time of the experiment.1,5-7 Since most animal experiments extend for 2 to 4 months, and the teeth on the control sides in rats and dogs move about .5 mm per month, the teeth on the corticotomy-treated side would move at the rate of about 1 mm per month.

HOW DOES CORTICOTOMY PRODUCE ACCELERATED TOOTH MOVEMENT?

On this topic, we agree partially with Drs Wilcko and Wilcko but would like to differentiate what happens in experimental animal studies and its translation to what is believed to happen in humans. We do agree, and past research has confirmed conclusively, that a corticotomy produces an injury to the alveolar bone that results in an exaggerated response from that organism to send cells to the injured area to facilitate healing. Drs Wilcko and Wilcko have already described this process as the regional acceleratory phenomenon. But how does the regional acceleratory phenomenon facilitate accelerated orthodontic tooth movement?

Drs Wilcko and Wilcko believe that the increase in the rate of tooth movement is due primarily to a demineralization process that occurs in the cancellous bone surrounding the tooth socket and secondarily to alterations within the periodontal ligament. We would propose a different viewpoint.

First, the studies showing demineralization in the interproximal bone surrounding the roots of teeth were performed in rats.1-4 Can we translate what happens in rats to humans? Is the extent of the
it is clear that the regional acceleratory phenomenon facilitates the acceleration in the rate of tooth movement. How long does the regional acceleratory phenomenon persist after the corticotomy?

Drs Wilcko and Wilcko did not discuss the duration of the regional acceleratory phenomenon after corticotomy, but we believe this question is of utmost importance to determine the effectiveness and efficiency of this procedure. Obviously, if the rate of tooth movement were accelerated by the regional acceleratory phenomenon, then it would be important to know how long this effect can be expected to last. Two studies, one in humans and the other in dogs, provide some insight into the duration of the regional acceleratory phenomenon and its influence on the rate of tooth movement.

In a study comparing the rate of tooth movement in foxhounds with a split-mouth design with a corticotomy performed on one side, the authors reported that the rate of tooth movement peaked between 22 and 25 days and then decelerated. During this 3-week period, the corticotomy-facilitated side moved twice as far as the opposite side. The authors then performed a second corticotomy procedure in some animals after 28 days and found that the higher rates of tooth movement could be maintained over a longer period of time with a second surgery.

Similar findings were reported in a study comparing the rate of tooth movement in foxhounds whose maxillary canines were being retracted after first premolar extractions. Corticotomy was performed on one side, and the other side was not operated. The rate of maxillary canine retraction was then documented over time. During the first 2 months, the rate of tooth movement on the corticotomy side was twice that of the unoperated side. However, during the third month, the rate was 1.6 times greater, and by the fourth month, the rates of tooth movement on both sides were similar.

Based on the results of these 2 studies, it seems that the length of the regional acceleratory phenomenon is probably about 4 months. Perhaps it could be a bit longer, but the regional acceleratory phenomenon does...
end, and its impact on accelerating tooth movement would also come to an end. Therefore, we conclude that corticotomy-facilitated tooth movement is only effective during the 4 months of the regional acceleration phenomenon. After that, the rate of tooth movement would return to normal. To determine whether corticotomy is efficient, we need to determine whether its effect produces a decrease in treatment time for adults.

DOES CORTICOTOMY RESULT IN REDUCED TREATMENT TIMES FOR ADULTS?

From what we have just stated regarding the acceleration of tooth movement in experimental animals and humans, it would seem logical that if teeth move twice as fast, treatment times for adults should be lessened substantially. However, no studies have documented this claim. Yes, if you review articles about case series or case reports on this topic, you will find claims and testimonials of shortened treatment times. However, one cannot measure treatment time without measuring treatment quality.

Yes, teeth can be aligned in a shorter time, but alignment is only 1 measure of the quality of orthodontic treatment. The American Board of Orthodontics has developed a detailed grading system that is used by certifying boards worldwide to assess the quality of orthodontic treatment. Alignment is 1 of 8 measures of treatment quality. To prove that corticotomy-facilitated orthodontics truly reduces treatment time in adult patients, one would need to perform a randomized controlled trial and randomly assign subjects with similar malocclusions to either a conventional or a corticotomy-facilitated treatment group, and then compare the quality of the treated result (measured with the American Board of Orthodontics’ grading system) relative to the length of time needed to treat the patient. Only in this way can one claim an overall reduction in treatment times for clinical patients. To date, no randomized controlled trial has been done.

DOES GRAFTING OF THE ALVEOLUS ENHANCE THE ORTHODONTIC TREATMENT?

Drs Wilcko and Wilcko claim that bone grafting of the facial and lingual cortical bones will enhance the stability of orthodontic treatment, facilitate a greater scope of tooth movement, and create intact buccal and lingual plates of bone by repairing fenestrations and dehiscences. Let us apply our measures of efficacious, effective, and efficient to these claims.

There is a paucity of information in the scientific literature to help us answer these assertions. At best, there are case reports and expert opinions regarding these issues. In past publications, proponents of periodontally accelerated osteogenic orthodontics claim that bone grafting enhances the stability of the orthodontic results. Based on the available science, there is no evidence in the literature that bone grafting of the alveolus enhances the stability of the orthodontic result. To document this claim, one would need to compare a sample of subjects who had corticotomy and bone grafting with a similar group of subjects treated without these surgeries at a minimum of 5 years after removal of all orthodontic retention. These studies are certainly difficult to complete, and none are available currently in the orthodontic literature.

Is bone grafting to augment the alveolus during periodontally accelerated osteogenic orthodontics efficacious? No randomized controlled trials substantiate this claim.

Is bone grafting effective? Case reports show a greater volume of bone in computerized tomographic scans. Is this bone incorporated into the native cortical plate, or is it a fibro-osseous material encapsulated on the outside of the cortical plate? The scans suggest that it is a fibro-osseous encapsulation.

Is bone grafting during periodontally accelerated osteogenic orthodontics efficient? To answer this question, let us examine animal studies that show what happens to the alveolus when teeth are proclined, and when teeth are retracted back into the alveolar housing without grafting. Animal studies show conflicting outcomes when teeth are proclined. Some show no change in the labial bone, and others show that dehiscences were created. Engelking and Zachrisson showed that retraction of mandibular incisors leads to repair of dehiscences with 2.5 to 3.1 mm of new bone formed. Histologic evaluation of tetracycline-labeled sections shows that osteogenesis occurs in the periosteum to a significant degree.

In their previous articles, Drs Wilcko and Wilcko have shown case reports of bone-grafted sites that were reevaluated after surgical flap reflection. Some of these sites showed repair of dehiscences and fenestrations on teeth that had been retracted orthodontically. Is this graft attached to the previously dehisced root surfaces with new bone, cementum, and periodontal ligament? Would this repair have occurred without additional bone grafting? The literature suggests that perhaps these defects will repair without grafting.
Drs Wilcko and Wilcko claim that this is a routine periodontal procedure with minimal discomfort. However, in a previous article, they stated that “a distinct disadvantage of this procedure is the additional cost and morbidity associated with surgery.”9 We agree that it is a routine periodontal procedure, similar to periodontal osseous surgery. However, with periodontally accelerated osteogenic orthodontics, there is additional surgery to the bone, along with periosteal release of the flaps to aid in covering the additional bone graft material. The additional releasing of the periosteum adds further inflammation, swelling, and discomfort.27

It is an invasive procedure with moderate morbidity.

WHAT IS THE FINANCIAL COST OF THE CORTICOTOMY PROCEDURE?

Drs Wilcko and Wilcko did not discuss costs, but we believe it must be addressed if we are to determine whether there is value in performing this procedure before tooth movement. Obviously, the fees for alveolar corticotomy would vary greatly depending on the extent of the procedure (1 arch or 2 arches), the type of procedure (corticision, corticotomy, or piezocision), and the location in the world where the procedure is performed. So, it would be better to relate the surgical fee to the orthodontic fee; this would eliminate most geographical differences. We have questioned surgeons and orthodontists regarding the surgical fees, and the answer that we commonly receive is that the fee for the corticotomy is typically the same as that for the orthodontic treatment.

CONCLUSIONS

Based on the information that we have presented, let us now answer the initial question that we posed at the outset of this article: Is corticotony-facilitated orthodontics an efficacious, effective, and efficient method of accelerating tooth movement in adult patients?

It is not possible at this time to determine whether corticotomy-induced tooth movement is efficacious. As mentioned previously, this question can only be answered by conducting highly controlled trials, which are not yet available.

Alveolar corticotomy is effective at accelerating tooth movement. However, it is not appropriate to conclude from this statement that corticotomy-induced tooth movement reduces orthodontic treatment times. This claim can only be made by measuring the quality of the treatment relative to the time of treatment in 2 matched cohorts of patients. This type of study has not yet been performed.

Whether alveolar corticotomy is an efficient procedure depends on the value received relative to the cost of the treatment in terms of time saved, money spent, and morbidity experienced. Obviously, only the patient and the orthodontist can determine whether sufficient value would be achieved in a specific clinical situation. However, we believe that (1) the limited duration of the regional acceleratory phenomenon, (2) the significant additional expense, and (3) the lack of evidence of a significant reduction in orthodontic treatment time lead us to question the efficiency of this procedure.

REFERENCES